Internal Water and Microsecond Dynamics in Myoglobin

نویسندگان

  • Shuji Kaieda
  • Bertil Halle
چکیده

Myoglobin (Mb) binds diatomic ligands, like O2, CO, and NO, in a cavity that is only transiently accessible. Crystallography and molecular simulations show that the ligands can migrate through an extensive network of transiently connected cavities but disagree on the locations and occupancy of internal hydration sites. Here, we use water (2)H and (17)O magnetic relaxation dispersion (MRD) to characterize the internal water molecules in Mb under physiological conditions. We find that equine carbonmonoxy Mb contains 4.5 ± 1.0 ordered internal water molecules with a mean survival time of 5.6 ± 0.5 μs at 25 °C. The likely locations of these water molecules are the four polar hydration sites, including one of the xenon-binding cavities, that are fully occupied in all high-resolution crystal structures of equine Mb. The finding that water escapes from these sites, located 17-31 Å apart in the protein, on the same μs time scale suggests a global exchange mechanism. We propose that this mechanism involves transient penetration of the protein by H-bonded water chains. Such a mechanism could play a functional role by eliminating trapped ligands. In addition, the MRD results indicate that 2 or 3 of the 11 histidine residues of equine Mb undergo intramolecular hydrogen exchange on a μs time scale.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct observation of myoglobin structural dynamics from 100 picoseconds to 1 microsecond with picosecond X-ray solution scattering.

Here we report structural dynamics of equine myoglobin (Mb) in response to the CO photodissociation visualized by picosecond time-resolved X-ray solution scattering. The data clearly reveal new structural dynamics that occur in the timescale of ∼360 picoseconds (ps) and ∼9 nanoseconds (ns), which have not been clearly detected in previous studies.

متن کامل

Evolution of the internal dynamics of two globular proteins from dry powder to solution.

Myoglobin and lysozyme picosecond internal dynamics in solution is compared to that in hydrated powders by quasielastic incoherent neutron scattering. This technique is sensitive to the motions of the nonexchangeable hydrogen atoms in a sample. Because these are homogeneously distributed throughout the protein structure, the average dynamics of the protein is described. We first propose an orig...

متن کامل

Heme proteins: the role of solvent in the dynamics of gates and portals.

Water plays a pivotal role in the correct functioning of proteins. Hydration is fundamental to their stability and flexibility, to folding process and specific functions, and to protein-protein interactions. In this work, the effects of solvation on proteins dynamics have been investigated by employing molecular dynamics simulations and using myoglobin as a model system. The investigation has b...

متن کامل

ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale.

The high arithmetic performance and intrinsic parallelism of recent graphical processing units (GPUs) can offer a technological edge for molecular dynamics simulations. ACEMD is a production-class biomolecular dynamics (MD) engine supporting CHARMM and AMBER force fields. Designed specifically for GPUs it is able to achieve supercomputing scale performance of 40 ns/day for all-atom protein syst...

متن کامل

Trehalose prevents myoglobin collapse and preserves its internal mobility.

A quantitative model, which involves diffusion on a temperature-dependent potential, is utilized to analyze the time-dependence of geminate CO recombination to sperm whale myoglobin in a trehalose glass and the accompanying spectral shifts. Most of the recombination is inhomogeneous. This is due to higher geminate reactivity rather than slower protein relaxation. A fraction of the hemes undergo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2013